
Open Source Sustainability and RDM

Scott Wilson
 scott.wilson@oucs.ox.ac.uk

What does sustainability mean?
To be sustainable a project must meet its own costs. Most projects have their
initial costs covered by an injection of funding from a parent body or sponsor.
However, what happens when this money runs out?

In some cases, the parent body will adopt the project as a production service;
this is great news for future sustainability, but will not necessarily be sufficient
to retain developers.

In some cases, it may make sense to spread the risks across more than one
institution, as a shared service or as an open development project.

In the rest of this talk, I’ll take a look at sustainability of third-party software
you may use for RDM, and also cover common open-source business
models that might apply to RDM software you may have developed.

How does sustainability apply to you?

 Sustaining software developed by another
organisation or project, that you use and will
be relying on in future
 Sustaining software that you have
developed, and are considering sharing with
others
http://www.oss-watch.ac.uk/resources/researchinfrastructure-
sustainability.xml

Sustainability of third-party software

 Risk mitigation
 Evaluation
 Engagement

Evaluating sustainability
 Maturity of the software
 Viability of the community

supporting the software
 Governance of the software and

openness to contributions

Models

 Openness Evaluation (OSS Watch)
 SSMM - Software Sustainability Maturity Model
(OSS Watch, Open Directive, CENATIC…)
 RRL - Reuse Readiness Level (NASA)
 QSOS - Quality and Selection of OSS
 CMMI - Capability Maturity Model Integration

Engagement

 Use only
 Contributing to the community
 Shaping the future direction

Engagement (2)

 Engagement options available depend upon the
governance model used by the project

e.g. meritocracy, benevolent dictator, single-company etc.

 This is another risk factor to consider:
 You may have limited options for contributing to the future

sustainability of the software
 Can be evaluated using models mentioned earlier

Engagement (3)

 Types of engagement
 Bug reports
 Feature requests and requirements
 Documentation
 Translations
 Marketing and publicity
 Software development

Sustainability of software you have
developed - and want to share as open
source

• Business models

• Community

Business and Sustainability Models
 These are mostly not mutually exclusive, and will most often be used in
combination as appropriate – more accurately they are elements of business
models

 This is still an emerging area of business practice

 Some of the current success of FOSS software exploitation techniques may
be attributable to dissatisfaction with more traditional proprietary techniques
and their associated big-name vendors, rather than any innate superiority

 It remains to be seen whether the current global financial difficulties will help
FOSS business or hinder it. Analysts are currently predicting both.

http://www.oss-watch.ac.uk/resources/businessandsustainability.xml

Overview of models
Academic community development
Spin out entity
Existing foundations (ASF, Eclipse…)
“Community Source” Foundation
Consultancy
Internal Cost Reduction
Paid Support, Documentation
Integration, Upgrades
Software as a Service
Competitor Disruption
Advertising and Referrals
Training
Trademarks and Merchandising
Dual licensing
Proprietary version (“bait and switch”)

First - what you cannot / should not do
 Charge for licences for specific uses of your code, for example commercial
use (Open Source Definition point 6)

 Charge for licences in general (Possible but subject to low/zero-cost
competition from all recipients)

 Tweak an existing FOSS licence for your purposes and still call your
software Free Software or Open Source Software (Strong community
rejection of these practices)

 Silently incorporate FOSS software in your proprietary offering without
abiding by the licence conditions (detection is likely, and although legal
damages are unlikely, damage to reputation is certain)

Academic Community Development
 FOSS licensing permits a varied group of contributors to work on software
that addresses a particular problem domain.

 Institutions and their academics can gain public profile by contributing to
such projects and becoming associated with respected tools in specific areas
of research. It can also help ensure the continued existence of useful
solutions.

 Examples include BioImage Suite (biological image analysis software)
YARP (experimental robotics software) and The Versioning Machine
(software for aligning differing versions of xml-encoded texts).

 Recognition for work on academic tools is still, however, some way behind
more traditional forms of academic recognition for publication etc

Establishing a separate legal entity
 Adds to sustainability by isolating risks (IP infringement, event organisation,
damages from failure) from the parent institution

 Facilitates donation of money and simplifies tax issues

 Most research institutions are already well-practised in setting up spin-out
companies. In the case of sustaining FOSS projects some kind of not-for-
profit entity may be just as or even more appropriate

 Such an entity can still have an affiliated commercial entity engaged in
exploiting the software and the brands that it stewards

Moving into an external foundation
 The benefits of foundation status have led to the establishment of umbrella
foundations holding multiple FOSS projects.

 Examples include the Apache Software Foundation, which supports
Apache HTTP Server, Cocoon, Lucene, Software in the Public Interest,
which supports the Debian Linux distribution and PostgreSQL, and the
Software Freedom Conservancy, home to Samba, Busybox and Wine

 Entering an umbrella foundation can radically reduce running costs for
projects that receive financial donations, as the foundation will handle the
necessary book-keeping, as well as providing the risk management benefits
that come with separating legal responsibility for a project from your host
institution

'Community Source' Foundations
 Where a number of separate institutions see a benefit in jointly developing a
piece of FOSS, they can adopt a model which has come to be known,
somewhat confusingly, as 'Community Source'

 Each institution contributes resources to developing the code, the
ownership of which rests in an external foundation

 In the initial phases the code may be unavailable outside the foundation,
although it will eventually be released under a FOSS licence

 Contributing resources to the foundation buys institutions early code access
and influence on the governance of the project and its functionality

 Mellon-funded projects Sakai and Kuali both began using this model

Consultancy
 Consultancy is another traditional technique for educational institutions
looking to financially exploit their resources

 A more traditional model might be to sell licences to a piece of research-
derived software and sell consultancy services and/or bespoke development
services alongside it

 Potentially a FOSS release of the software can improve uptake, given its
low cost of acquisition, and drive the market for associated consultancy and
development services more successfully than the traditional model

Internal Cost Reduction
 Institutions may be happy to sustain an internally-developed FOSS project
themselves if the project can demonstrate that it drives down the running
costs of that institution or solves an institutional problem

 Projects that reduce costs in one institution may have good potential, when
mature, to be deployed in others. This provides opportunities for paid
consultancy and/or provision of the software as a service (see below)

Provision of Paid Support /
Documentation
 Just because your code is freely available, it does not mean that the
documentation or your help needs to be (as with the consultancy and
bespoke development model)

 Support can be provided in time- or incident-limited bundles

 Support can be in the form of guaranteed performance on specific hardware

 Documentation can take the form of paid access to a knowledge base of
previously resolved issues

 HOWEVER, in this case one is in competition with the software's user
base/community, who may be willing to provide peer support for free

Integration / Managed Upgrades
 Managing the integration of various FOSS technologies, with their varying
dependencies and release cycles, is a service that people are prepared to
pay for

 Similarly managing the deployment of upgrade patches can be a paid
service

 Bundles of tested, integrated FOSS software can be sold along with,
potentially, support agreements

 HOWEVER, close integration may trigger responsibilities in particularly
copyleft licences that could prevent integrated distribution – read the licences

 Example: MapR provide integrated Big Data solutions based on Apache
Hadoop and related open source components

Competitor Disruption
 Sometimes a FOSS alternative to a competitor's product can disrupt their
business model and provide competitive advantage (although this is almost
never the sole motivation behind the release or distribution)

 Examples (arguably) include Sun's OpenOffice.org, Google's bundling and
distribution of Microsoft-competing software such as OpenOffice.org, Firefox
and Chrome (the 'Google Pack'), Netscape Corporation's FOSS release of
Netscape Navigator

Software as a Service
 Increasingly consumers are becoming comfortable with so-called 'cloud'-
based software offerings – software that is accessed and used over the
internet, and which stores data remotely from the user

 SaaS can be a useful solution to the problem of institutionally developed
software that relies integrally on copyleft-licensed code

 Provision of service using copyleft software does not count as distribution,
and thus does not trigger copyleft's reciprocal licensing responsibilities

 HOWEVER – this is a known 'bug' in copyleft licensing, and licences such
as the GNU Affero GPL v3 are already in existence to 'fix' it.

 Another model is to use permissively-licensed components as the basis of
the service, with, optionally, proprietary “glue” code and user interface

Advertising / Referral
 Your software or accompanying web site may be able to direct network
traffic to an entity that is willing to pay for hits (although of course this
functionality can always be engineered out by technically apt users)

 This is Mozilla Foundation's main source of income

 Firefox's built-in search box directs queries to Google

 The vast majority of Mozilla Foundation's revenue ($132m in 2010) comes
from Google under this deal.

 Wordpress, the FOSS blogging software and hosting platform is partly
funding their parent company Automattic through this model

Training and Accreditation
 As well as support and consultancy, generalised training documents,
courses and qualifications may be viable products

 Control of an associated trademark enables the provision of 'X-Certified
Professional' style programmes

 Actual training and examination are readily out-sourced

Trademark Licensing / Merchandising
 Just because your code is available under a FOSS licence, you do not have
to permit universal use of your project's name and associated symbols

 Unlike copyright, trademarks are a registered form of IP, meaning that you
have to apply to relevant government agencies for ownership. However,
compared to patent application, trademark registration is relatively
inexpensive

 Owning your trademark facilitates the sale of associated merchandise and
accreditation and marks like “Powered by X” and “Using X technology”

 Can be a deterrent to forking if the brand is strong enough – the motivation
to increase personal reputation by providing functionality outside project “X”
is partially undermined by the inability to call the new project “Improved X”

Proprietary Versions and Components
 Sometimes referred to disparagingly as the 'Bait and Switch' model

 A FOSS edition of software is offered which lacks some of the functionality
of a paid edition, either throughout its code or in the form of missing
proprietary components

 While the existence of better-supported or hardware-accredited forms of
FOSS offerings is generally accepted by the FOSS community, proprietary
components and versions are less well-liked (although there is perhaps
growing acceptance as the community matures)

 HOWEVER, this is another example of competing with the community. The
FOSS model means that anyone can produce freely available versions of
your paid functionality, given enough time and expertise

Dual Licensing
 Provided that you have the necessary ownership or sub-licensing rights
over your project's code, you can provide it under differing licences

 In the classic case, these would be a copyleft licence and a paid proprietary
licence

 Customers who wish to build software product incorporating your code and
who do not wish to use the copyleft licence must pay for the proprietary
licence

 This is therefore most suitable for code which is readily susceptible to
inclusion within commercial software products, for example database
backends

Community
Successful open source software projects tend to develop committed
communities of developers and users. These communities can include
everyone from hobbyists to professional software writers to end users. They
may form naturally or they may be significantly assisted by a large
corporation
http://www.oss-watch.ac.uk/resources/researchinfrastructure-
community.xml
http://www.oss-watch.ac.uk/resources/buildingcommunities.xml

Resources

http://oss-watch.ac.uk

Do get in touch:

info@oss-watch.ac.uk
http://www.oss-watch.ac.uk

@osswatch

