
Agile and Open Development

Neil Chue Hong, OMII-UK

Ross Gardler, OSS-Watch

JISC e-Infrastructure Programme Meeting

Birmingham, 7 Feb 2008

Unless otherwise indicated, all materials in this presentation are © 2008 University of Oxford and OMII

and are licensed under the Creative Commons Attribution-ShareAlike 2.0 England & Wales licence.

http://www.oss-watch.ac.uk/about/copyright.xml
http://www.omii.ac.uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/

Ross Gardler

ross.gardler@oucs.ox.ac.uk

http://www.oss-watch.ac.uk

mailto:ross.gardler@oucs.ox.ac.uk
mailto:ross.gardler@oucs.ox.ac.uk

 JISC funded advisory service on open source
software (non-advocacy)

 Provide one-to-one consultancy on all issues
relating to open source
◦ Licencing and IPR management

◦ Making your code available as open source

◦ Evaluating and using open source

 Produce briefing notes

 We help you understand and apply the JISC
Open Source Policy

Web: www.omii.ac.uk Email: info@omii.ac.uk

OMII-UK: Software Solutions for e-Research

• OMII-UK provides software and

support to enable a sustained

future for the UK e-Science

community and its international

collaborators.

o Core support and development

o Commissioned Software

Programme

o ENGAGE: improving access to e-

Infrastructure

o Phase II: 2006 – 2009

• Contact me: N.ChueHong@omii.ac.uk

Web: www.omii.ac.uk Email: info@omii.ac.uk

OMII-UK: Adding benefit to e-Science

• More than just the
middleware

o go above the components to
provide added value

• Skilled team to help the
community

o putting the right things
together, integrating
components

o providing consultancy and
support to improve takeup

o developing, commissioning
and improving software

Session Timetable

• Introduction to Agile Development (Neil)

• Assessing your Agility exercise

• Comparing Open Development (Ross)

• Discussion: JISC projects and Agile/Open

Development

What is Agile Development?

Key points

• Why did Agile Development develop?

• What does it mean to be Agile?

• What are the basic principles of Agile
Development?

• Suggested reading:
– An Introduction to Agile Methods (Hayes, Andrews)

– Agile Software Development Ecosystems (Highsmith)

– Agile Alliance website: http://www.agilealliance.org

– The New Methodology (Fowler)

http://www.agilealliance.org/

• Most software development is chaotic
– code like hell (aka code and fix)

– no underlying plan

– works initially but hard to scale as system grows
• hard to add features

• hard to find and fix bugs

• long test phases (if at all!)

• Engineering Methodologies imposed discipline
– improve predictability, improve efficiency

– but seen as bureaucratic, unpopular

– reduce the pace of development

From Nothing to Monumental

From Monumental to Agile

• Developed in reaction to Engineering Methods

– compromise on amount of process

– adaptive rather than predictive

– people-oriented rather than process-oriented

• Why doesn’t Monumental work for software?

– cost of design versus cost of construction in a project

– impact and likelihood of change

– formal design models in software are still maturing

– monumental doesn’t always work for engineering!

The Agile Manifesto

We are uncovering better ways of developing software by

doing it and helping others do it.

Through this work we have come to value:

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

That is, while there is value in the items on the right, we

value the items on the left more.

Core Values of Being Agile

• Iteration!
– not about completing tasks but about completing business

functionality and reflecting on what has been achieved

• Increments!
– do the simplest thing that could possibly work and let

subsequent iterations build on this

• Customer-driven!
– get your customers involved and exhibit progress each iteration

• Courageous Communication!
– open and honest can often be difficult across levels

• High quality!
– by continuous improvement, not over-engineering

• United team!

Agile is not just XP

• … although it is by far the best known

• XP - Communication, simplicity, feedback, and courage; use specific
technical and collaborative practices

• Scrum - Prioritised list of requirements on a product backlog, daily standup
meetings, use retrospectives to correct the process

• Crystal - Emphasize people, gather techniques from other methods,
improve communications, adapt the process itself

• Lean - Move closer to customer, shorter cycles, eliminate waste, decide as
late as possible, empower the team, build in integrity

• Dynamic Systems Development Model - Empower the team to make
decisions, frequent product delivery, collaboration between all stakeholders.

• Feature Driven Development - Centre development around the feature,
create a domain model with domain experts

• Each methodology emphasises a set of mutually supporting techniques,
backed by common values.

Myths of Agile Development

• Agile is new and untested

• Requirements not documented

• No architect(ure) = chaos

• There is no design stage

• Risks are being ignored

• Devs / Customers will hate it

Is Agile for my project?

• Agile isn’t always appropriate

• It doesn’t guarantee success

• Must be adaptive!
– spot deficiencies and correct process

• It can be difficult to apply particular techniques to
distributed teams
– to be covered later

• Many projects have benefitted from committing
to an agile methodology

• Are you on the way to being agile already?

Assess your Agility!

• Look at the sheet, consider your project,

and answer the questions truthfully!

– If you aren’t sure, give yourself zero points

• Total up your scores for each of the five

sections

• Write them on the sheet on your table

– Anonymous exercise to protect the innocent!

• Should take about 15 minutes

 What is open development?

 How does it relate to agile development?

 How does it relate to JISC projects?

 How do we improve the “typical” JISC
development approach?

 How can OSS Watch and OMI-UK help?

 It is a development methodology

 Key attributes include:
◦ User engagement

◦ Transparency

◦ Collaboration

◦ Agility

 But, Open Development is not the same as
Agile Development

 Some agile processes require co-location of
developers and customers

 Open development requires that anyone can
participate regardless of their location
◦ NOTE: this does not mean that anyone has the right

to modify open source code in the core repository

 Many agile practices evolved from or
alongside open development, e.g.
◦ Collective code ownership

◦ Incremental design and architecture

◦ Real customer involvement

 Other agile practices are so “obvious” they
are already found in open development, e.g.
◦ Version Control

◦ Trust

 Agile development, when done right, is
repeatedly shown to be the most effective
way of producing software.

 JISC projects are usually either:
◦ Too small to follow all agile process, and/or

◦ Too widely distributed to follow all agile processes

 Open Development is more suited to a typical
JISC project
◦ Regardless of licence choice

No :-(

Yes :-)
At least I believe so

The following slides map eXtreme Programming* to our
proposed Open Development process.

We will look at each category in the questionnaire and
briefly discuss the main practices within it.

After this section we will discuss these practices in the
context of JISC projects. Which do we feel are appropriate

and which are not.

* as described in The Art of Agile Developmet by James Shore and Shane Warden,
published by O'Reilly

 Root-Cause
Analysis

 Pair Programming

 Root-Cause
Analysis

 (Peer Review)

 Trust

 Ubiquitous
Language

 Coding Standards

 Iteration Demo

 Reporting

 Trust

 Ubiquitous
Language

 Coding Standards

 Snapshot Releases
and Screencasts

 Reporting

 “Done Done”
 No Bugs
 Version Control
 Ten-Minute Build
 Continuous

Integration
 Collective Code

Ownership
 Documentation

 “Done Done”
 No Bugs
 Version Control
 Ten-Minute Build
 Continuous

Integration
 Collective Code

Ownership
 Essential Formal

Documentation

 Vision

 Release Planning

 The Planning
Game

 Risk Management

 Iteration Planning

 Stories

 Vision

 Release early,
release often

 Issue
Management

 Risk Management

 Iteration Planning

 Story Issues

 Incremental
Requirements

 Customer tests

 Test-Driven
Development

 Simple Design

 Incremental Design
and Architecture

 Spike Solutions

 User Engagement

 User Tests

 No Test, No
Commit
Simple Design

 Evolutionary Design

 Snippets

 This mapping is inspired by my experience in
The Apache Software Foundation.

 This is merely my own experience

 The ASF process scores as follows:
◦ Thinking: 89

◦ Collaborating: 85

◦ Releasing: 96

◦ Planning: 99

◦ Developing: 89

• Agile/Open Development requires a
culture change in your project team

• Finding a good mentor is an
important part of learning how to
adopt open/development

• We have staff

experienced in both

open and agile

development

• We can mentor your

team

• info@oss-watch.ac.uk

(or a bar near here)

• Help on software

development and

infrastructure

• Work with projects to

improve sustainability of

software

• Consultancy (and some

funding) available

• info@omii.ac.uk

mailto:info@oss-watch.ac.uk
mailto:info@oss-watch.ac.uk
mailto:info@oss-watch.ac.uk
mailto:info@oss-watch.ac.uk

