

__

 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/2.5/ or send a letter to Creative Commons, 543
Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Notes and Slides from a Presentation to the OSS Watch Conference on

Open Source and Sustainability

held at the Saїd Business School, Oxford 10-12, 2006

A Multi-dimensional View of the “Sustainability”
 of Free & Open Source Software Development

Sustaining Commitment, Innovation and Maintainability with Growth

By

Paul A. David

Oxford Internet Institute & Stanford University
paul.david@oii.ox.ac.uk & pad@stanford.edu

Revised version: 7 June 2006

Introduction: An economic systems perspective on the question of sustainability

 Questions of “sustainability” are at the heart of much of the speculative discussions about the
long-term significance of the open source software movement. Some of those questions concern what
I will refer to as the characteristic community-based mode of developing FLOSS (Free/Libre and
Open Source Software), associated with large projects such as Linux, Apache, GNOME, KDE,
Mozilla, MySQL, and many others. That is not the entirety of the sustainability question, but it the
subject I want to take up in this presentation: Is the FLOSS mode of production really a lot more
substantial than the name would suggest?

 Much of the discussion of sustainability has been cast exclusively in terms of the need to
provide funding by coupling projects with the direct or indirect sponsorship of business firms that can
expect to profit by marketing complementary goods and services, from hardware and grid services to
software manuals and IT consulting. By pitching the question of sustainability at the level of the
individual project, and deliberately pressing for a “hard-headed” view of “financial” matters that do
not figure centrally in the organization and conduct of FLOSS projects, that approach certainly
introduces a useful note of economic realism into discussions of “the future of open source.”

 Yet, it must also be said that to consider the issue of sustainability solely in those terms tends
to have the undesirable effect of presenting the problem and its solution as an “add on activity,” albeit
one that wise project leaders should be thinking about in advance in order for support arrangements to
be in place as their development effort matures. To disconnect one’s thinking about sustainability
issues from the organization and conduct of the development process in that way, however, is likely
limit the effectiveness of the advice at the level of individual projects. Moreover, it takes attention
away from a number of significant issues that are likely to affect the collective future of FLOSS as a
mode of software production, and possibly as a paradigm for information goods production more
generally.

 An alternative (but not incompatible) way of looking at a number of other facets, or
dimensions the sustainability problem is provided by taking the “economic systems” approach that I
will pursue in this brief presentation. Will the “distributed community mode” of software

 2

development – which is a distinctive generic feature, shared by the variety of different specific
FLOSS project “models” – be sustainable? Can this “system” not only continue producing robust
code, but generate novel, innovative software, while maintaining and upgrading the code of the
projects that have already established themselves as challengers to the conventional commercial sector
of the software industry -- not only in the web-server market (Apache), but in field of browsers
(Mozilla-Firefox), text processing (Open Office), relational databases (MySQL), and most recently,
multi-player on-line games? In other words, do organizations of this kind – being neither markets or
hierarchically managed firms – have a future, so that it will benefit other private and public agents in
the economy and society to think about how best to interact with their members and their products?

 We can begin to tackle this big question by focusing on three more manageable facets of the
problem of sustainability: “community commitment,” the rate of innovation through the founding of
new projects, and managing maintainability in large projects as they add functionality. I do not claim
to have definitive answers on these topics, much less to have reached a conclusion about the big
question. The message I wish to convey is one that is mixed: what empirical research on FLOSS
developers and their projects has shown is that at least some of the doubts that continue to be voiced
about the future of this movement are not well supported by the evidence. Still, the outlook is far from
perfectly rosy, because there remain a number of less frequently noticed challenges to “system
survival” – which from my perspective would be “success.”

Sustaining commitment in the community of FLOSS developers

 Ideological enthusiasm undoubtedly plays a role in the movement’s recruitment of volunteers,
but isn’t that bound to dissipate when those who have joined come to face the realities of earning a
living? Won’t those who were most strongly attracted by the non-commercial “communitarian” ethos
of FLOSS soon become disaffected by either the economic rewards reaped by a few successful
charismatic project leaders, or by the growing corporate employment of expert professional
programmers to work on the projects?

 Why not look at the evidence from developer survey responses? What are the main
motivations for beginning to participate in FLOSS development activities, and how do these evolve
with experience? Do developers tend to become less ideologically and community motivated?

 It’s a mistake to imagine we will find a typical or representative “motive” to explain the
behavior of developers that are involved in FLOSS activities. Many motives are offered by
survey respondents, and it is usual for individuals to give multiple reasons as having been
important in motivating them to begin contributing to FLOSS projects. The reasons range from
the ideological to the material; from the “intrinsic” satisfactions programming and bug-fixing
to the instrumental goals of increasing one’s software skills and creating code to meet a special
software need; and from individualistic ego-driven motivations to more other-regarding,
community-oriented rationales for action.

 But individuals’ motives are not static. In the FLOSS-EU (2002) survey of developers, the
reasons respondents give for their continuing participation are more focused than the reasons
that motivated then to begin: among the focused motivation-profiles identified by cluster
analysis, the two that emerge as most prominent can be characterized as “ideological and
community-oriented”, and “individualistically instrumental” (e.g. improving their
programming skills and producing software that would be useful to them).

 So, the importance the developers attach to their personal identification with community norms
and ideology actually doesn’t diminish as they gain experience in FLOSS development (at least
not among those who do continue participating); and for many developers their social
motivations are entirely compatible with assigning importance the practical benefits they derive
as individuals.

 3

 Nonetheless, among the developers who responded to the 2003 FLOSS-US web-survey and,
equally, among those who registered and were active on SourceForge in the same period, the
typical early experience is participation in very small, and little known projects – rather than
attachment to large communities. Perhaps this is less the case among developers in the EU than
those in the U.S. and other regions, but SourceForge is thought to be a very internationally
varied site for FLOSS projects, and 72 percent of the projects listed on at the close of 2003 had
only 1 member!

 From the organizational perspective, however, it is the large and complex development
projects that constitute the interesting and novel departure in software production, making the
strength of individual motives relating to community identification and social interaction a critical
matter for the sustainability of “community commitment.” Are the motives and attitudes of developers
participating in large FLOSS projects significantly different in those respects from the motives of the
individuals who are devoting their efforts to one or another of the myriad small projects?

 A recent analysis of developer motivation patterns (based on the FLOSS-US 2003 Survey
data) defined clusters, two of which were distinguished by the strength of the relative
importance the individuals attached to social interactions in code development or in acquiring
software knowledge and skills --along with other reasons for their participation that were
shared by individuals assigned to other “clusters.”

 Comparing the relative frequencies of those two motivation-clusters among the developers

who could be identified as contributors to large (>29 member) or to very small (>1-2
member) projects, it is found that the projects in the larger size range had attracted a
significantly larger share of the developers who were motivated by those more “socially
oriented” forms of participation in FLOSS. The evidence of the existence of such an
association is perhaps not so surprising, but one still cannot say in which direction the
causation runs between project size and the intensity of the value placed by its contributors on
social interactions within the community of developers.

 Does this mean that, by-and-large, FLOSS developers are un-sympathetic to the attractions of
business applications and professional career advancement in software production based on open
source, or doubtful that they would be able to earn a living in this way?

 Clearly not, because a majority of the respondents to the FLOSS-US (2003) say they expect
to have future roles in open source-based businesses. About 66% of those in the age group 23-
28 answered positively, indicating they looked forward to being either owners (15%) or
employees (26%) of such companies, or consultants (22%). Among the 28-34 year-olds, the
corresponding percentages are still larger: owners (25%), employees (43%), and consultants
(38%), so that 95% of that age-cohort anticipate earning some part of their living in this sector
of the software industry.

 Such expectations are somewhat more prevalent among the survey respondents who report

having begun their participation in FLOSS activities during 2001-2003. We cannot say
whether this reflects the emergence of a business ecology organized around the growing
number of mature FLOSS products, or whether that trend itself is being driven by more
pronounced business interests of those who are being drawn into “the world of FLOSS.”

 At the same time, as several survey-based studies have confirmed, immediate economic

rewards in the form of “direct monetary earnings” are not at all central in drawing the mass of
developers into contributing to FLOSS projects, whatever the expectations are about the future.
Furthermore, as I have pointed out earlier in noting that motives evolve on the basis of
experience, where reasons for continuing to participate can be distinguished from those for

 4

starting, it is the more ideological and community-oriented reasons that are found be salient for
a larger proportion of survey respondents.

 It surely is a mistake to think of monetary rewards and other non-monetary considerations as
alternative, mutually incompatible sets of “inducements” or incentives for working on FLOSS
projects, or, indeed, in any line of work. Although the theory of “compensating differences in pay”
goes back to Adam Smith, and there is ample empirical evidence that people ask for higher wages to
do less pleasant, or more dangerous work, it is also true that individual “values” of a non-materialist
kind and preferences for association with the goals of some employing organizations rather than
others, affect the ability to recruit workers for a given task. Nonetheless, it is relevant to try to answer
the question: Which is the more important -- work that direct earns monetary compensation or pure
volunteer work – as a source the current developers’ efforts devoted to the production of open source
software?

 Monetary rewards undoubtedly are a large part of the motivational picture, but this is not the
same thing as saying that immediate direct income earning (as opposed to hopes of future and
possibly indirect economic payoffs) is the main consideration sustaining participating in
FLOSS activities. On the basis of the two major surveys of developers --FLOSS-EU (2002)
and FLOSS-US (2003) – which between them obtained almost 4000 responses to the same set
of questions about monetary earnings from open source software work, the bounds on the
proportion of developers who report receiving direct compensation can be put at 27.6% --
33.1%. The others (i.e., the 68% to 72%) who may be viewed for this purpose as the pure
“volunteers”, reported either no monetary earnings of any kind or only “indirect income”
earned in a job for which they had been hired the basis of skills and experience gained
previously through involvement in FLOSS development.

 Taking the upper bound of 33% as the non-volunteer portion of the FLOSS developer

community, one must then make an allowance for the difference in the relative time devoted to
open source projects by those who are employed to do it, and those who volunteer. Both the
FLOSS-EU and FLOSS-US survey’s concur in reporting an average 11 hours per week worked
on open source projects, but if one assumes that the “volunteers” put in only half as much time
per week those who were receiving direct monetary compensation, the two groups would be
contributing equally in terms of time input. Assuming that those who are compensated work
twice as much as the “volunteers”, on average, is not entirely arbitrary: The FLOSS Survey
asked the developers who were employed to work on proprietary software how much time they
spent in such work, and found the weekly average hours were roughly twice the general
average spent on open source development. (But it should be noted that this doesn’t give us
exactly the multiplier that we need for the calculation. In the first place, only one-fourth of the
“non-volunteers” were employees whose assignment was to work on open source projects, so
there is a question as to whether the self-employed averaged longer or shorter hours than those
who where employed. A second problem is that employees of proprietary software firms --
most of whom are unlikely to have been assigned to work exclusively on open source projects -
- would be constrained in the amount of time they could devote to open source development,
and that could would make the multiplier of 2 rather too high.)

 But its not a major worry if the time input multiple of 2.0 and hence the 50% effort estimate

for the non-volunteers is overstated, because it seems reasonable to assume that the average
effectiveness of an hour worked on open source development by a paid employee would
exceed that of a hour of effort from the average “volunteer.” To go farther in assuring that this
exercise is not overstating the relative contribution of the “volunteers” in terms of their
aggregate equivalently effective effort, one could allow that paid employees might be 25 %
more effective on average. The upshot is that two-thirds of the FLOSS developer community
that are “pure volunteers” contributed about 45% of the “equivalent effort input, and the

 5

balance being supplied by those who receive at least some form of direct monetary
compensation for their FLOSS development work.

 It should be evident from the foregoing discussion that the role of non-monetary “rewards”,

expectations of the future viability of income-earning careers based on open source software,
in mobilizing the effort of volunteers, along with the proficiency of recruits and the support
provided for skills improvement, are not issues that can be neglected in discussions of the
long term sustainability of the open source mode of production any more than they can be
taken for granted by those who hope to lead large successful projects.

Sustaining the generation (founding) of new FLOSS projects

 With many of today’s FLOSS developers seeking to become better programmers, and
expecting to find future employments in businesses based on open source software, does that translate
into a sustained rate of creation of new projects? Is there any reason to suppose that the proportion
of innovating, entrepreneurial types in the population of FLOSS developers will remain as high as it
has been until now?

 Actually, if launching one’s own project is the test of having the “entrepreneurial
spirit,” the trend seems to be going in that direction, rather than the other way. Among
the respondents to the FLOSS-US (2003) survey of developers, the proportion of
responders who were working on projects that they said they had launched alone or
with others is strikingly high: 52 percent said their current project not well known and
that they had founded it, either alone or with others.

 Moreover, reports of that kind are especially frequent from those who had taken up
FLOSS most recently (during 2001-03) and were working on their first and only
project: 82 percent described the project as “unknown” or “known only slightly” and
as one that they had had a hand in its launching.

 Of course, as is the case with small business start-ups, the odds are that the mass of
these little known projects will remain that way and will eventually be abandoned,
whether they achieve “maturity” or not. The question here is about the propensity to
attempt to succeed by creating something new, not the probability of succeeding in an
innovative project.

 -- Creating code to form the kernel of a new project is harder than releasing existing code
 under open source license. So rising numbers of projects on platforms like
 SourceForge could be quite misleading. Existing code brought to the platform and
 released as open source might not have the architecture suitable to absorb contributions from
 those who hadn’t (re-) launched the project, whereas projects created de novo in the
 environment of SourceForge could have a better chance of attracting a growing community
 of contributors. But aren’t many of the projects that appear on SourceForge attracted to that
 site, rather than really being “born” there?

 Yes, that is true, especially during the early years of SourceForge’s history: during the first 3
years, i.e., up though 2001, the proportion of registrants who posted projects during their first
three months on the platform was higher than it subsequently became, as it declined with
each successive (60-day long) cohort of entrants; a similar cohort-to-cohort decline cut the
proportion of projects posted during months 4 through 9 to half of its initial level.

 On the other hand, since most of the registrants on SourceForge (more than 80 percent) are

just “sightseers” who did not join a group, submit a patch or even contribute to a project

 6

forum, it is more informative to focus on the project-launching propensity of those belonging
to the “active” sub-population: among the latter, the proportion that became founders during
months 4 through 9 on the platform remained little changed from one-cohort to the next.

 As the average probability that an “active” developer will launch at least one project within a

6-month interval is approximately 0.12, we can expect at this rate that within a two-year
period about one-fourth the members of an active developer cohort would have joined the
ranks of founders, and three-fourths of them would do so within a five-year interval.

 Even though the “active” developers on SourceForge constituted less than 15 percent of those

who registered themselves (and were not de-listed), the propensity to launch a project, as just
reported, is quite high. But it is in substantial part a transient condition, reflecting the
likelihood that developers who are going to launch a project on the platform typically do not
wait many months before doing so, and that thereafter they tend to become absorbed with that
the activities of that venture and do not launch another.

 Therefore, in the limit – that is to say, abstraction abstracting from the transient influence of

what they were doing (or not doing) during the months immediately after entering
SourceForge -- the proportion of active developers that can be expected to launch just one
project within a 6-month interval is about one-third lower than the empirically observed rate,
or 0.08. This average probability implies that within 5 years 57 percent of them (rather than
75 percent) would have founded a new project.

 Evidence from the 2003 FLOSS-US survey is quite consistent with the foregoing picture. The

median duration of the respondents’ participation in open source activities is 5 years, and 47
percent of them reported having “launched” their current project, either alone or with others.
Among those who had only start to participate during 2001-03, however, 42 percent reported
having launched a project. Given the shorter time interval on which the latter group are
reporting, the implication is that (in the sub-population whose experience was
contemporaneous with the developers observed on SourceForge) the proportion founding a
project within a 5- year interval would be higher than 47 percent. Therefore it would more
closely approach the 57 percent estimate obtained from the study of active cohorts on
SourceForge.

 Inasmuch as launching and continuing to work on a small project seems to be typical
behavior for a very substantial portion of the individuals involved in FLOSS development, including
many that are just beginning, isn’t it rather unlikely that the skills and experience of typical
“founders” differ very markedly from the software programming skill of the developers individuals
who prefer to join existing, larger project?.

 This supposition is confirmed by the close similarity between the average self-reported level
of software skills in the sub-population who had launched a project on SourceForge and that
among SourceForge project members who never had a founder’s role.

 The founders of projects do differ, on average, in other regards: notably in the greater

frequency of their generic skills and communication and networking experience, whereas they
typically have had less experience as project member, particularly on the projects with many
members.

 There still other, rather intriguing indications that the propensity to join projects does not fit

well with being a founder of projects. It is possible to compare the activity records of two
groups of SourceForge participants, both of observed to have become project members during
their third month on the platform: for those who joined a single group at that time, the
limiting expected proportion that would launch a project within a 5-year interval was slightly

 7

greater than 26 percent; whereas among those who initially had joined more than one group,
the corresponding proportion of founders was negligibly small.

Sustaining maintainability as functionality is added to the large FLOSS projects

The world of large FLOSS projects – those that have attracted the widest notice and are

arguably are the most important – is a very different one from that of small, personally managed
projects. In general, the lives of small projects, like the lives of small business ventures, are more
precarious and their survival is more difficult to predict. But is the continuing growth and
maintainability of large projects FLOSS projects much more certain?

Quite aside from the issues of motivation and commitment of developers associated with these

projects, doubts have been expressed concerning the validity of drawing an analogy with the greater
survival capabilities of large firms. Whereas the latter typically are guided by the “visible hands” of a
hierarchical management structure, much less is known about the governance of large FLOSS
projects.

Moreover, the literature on software engineering contains a strand of argument which leads

to the expectation that these projects will become more and more difficult to maintain, and that their
pace of growth (and increasing functionality) will slow.

 Indeed, the signs of “crisis” that overtook the development of Microsoft’s promised

“Longhorn” update of Windows, and the more widely reported delays experienced with the successor
(“Vista”) project, have suggested to some commentators that conventional commercial software may
be no less vulnerable to such problems.

 The problems encountered by the once-vaunted development process at Microsoft are

something of a red herring in this connection. There are at least two grounds on which to
dismiss the experience of Windows as largely irrelevant:

o In the first place, the Windows code base is far bigger than even the largest FLOSS

projects, e.g., Linux.
o Secondly, and perhaps more importantly, in the case of Windows strategic business

reasons led Microsoft’s programmers to embedded new functionalities (browser,
media player, etc.) in the operating system, greatly complicating the task of updating
the resulting complex architecture of the system.

 Leaving the experience of the commercial software development organizations aside, then, ,
what does the available more direct evidence suggest regarding the existence of maintainability
problems that create obstacles to the growth large FLOSS projects?

 Remarkably, it is found that the growth of the file-size of the Linux kernel has been super-
linear, and in a sample of 17 large projects, the time path of project file-size is substantially
linear.

 There are two conditions that suggest that a constant rate of growth, involving the addition of
functionalities, can be sustain in these large FLOSS projects—at least over the size range
bounded by the Linux kernel project:

o The ability of the projects to mobilize a rising number of distributed developers and

bug-patchers distinguishes their situation from that of the commercial software
companies, and therefore if growing complexity brings increased need for
programming inputs, it need not slow the development process. Instead, it is likely to
call for increased number of maintainers to deal with code submissions and handle

 8

commits: It is relevant that a recent study of file level activity in 10 large libre
software projects has found that there is a systematic positive association exists
between technical measures of code complexity (specifically, either McCabe or
Halsted complexity) and the maximum number of maintainers that commit to the file.

o Large FLOSS projects are not only modular in their architectures –in the sense that

the code is organized in a large and increasing number of “packages” or module (as
illustrated by the Linux kernel releases 1.0, 2.0 and 2.5), but the architecture can be
designed so that cross-dependence among the modules is minimized, making the
organization of sub-projects more separable, and hence more readily governed by the
maintainers.

Therefore, on technical grounds it appears there are no obvious and compelling reasons to
think that large FLOSS projects will share the particular fate that has overtaken the development of
Windows, so long as they remain able to mobilize and elastic supply of competent and committed
programmers. Of course, that is not assured and it is one of the grounds for realistic concern about
the long-term future of this mode – or indeed any mode -- of software production.

A realistic optimist’s conclusion

 Correcting a number of frequently voiced grounds for pessimism doesn’t dismiss all the
skeptics questions, because there remain are a number of serious challenges to the sustained success
of the FLOSS community mode of production – and that is the only viable alternative to conventional
“closed” code production methods for complex software systems.

 A number of the potentially more serious challenges have been alluded to in the preceding
discussion, but here is a more explicit and extensive list:

• Will there be an adequately elastic supply of FLOSS programmers who are capable of

writing robustly reliable code? Are the many projects that have only a few members
indicative of difficulties in recruiting a talented core of developers?

• Modular architectures are essential for successful management of the distributed
development process, and to make it feasible for newly recruited programmers on big
projects to quickly grasp the underlying reasons for the decisions that were previously
made about requirements and code design. But it appears that the necessary talent for that
challenging form of creativity -- designing an architecture that effectively anticipates and
provides options for development of future functionalities, while not overly-specifying
many other aspects of the future code – is quite rare. How can it best be identified and
allocated among the communities that are developing large and complex system?

• The global FLOSS community is widely distributed and very loosely connected, so that

coordination on some strategies of resource allocation is difficult. Will this be challenge
addressed, or will the collectivity of major FLOSS projects essentially remain guided by
emulative strategies of engaging focused commercial vendors of established software
systems in head-to-head competition? This could put them at a disadvantage, especially
when they seek to compete in niches where incumbent firms with large user bases have
ample resources to move toward emulating FLOSS production methods, by taking up
“agile programming” and moving toward more continuous release policies.

• The success of a number of large projects could make them targets for future patent
infringement suits (like that of the SCO Group), pushing them toward protective limited

 9

liability incorporation as foundations, but the resulting controls are likely to conflict with
the ethos of the original FLOSS movement.

• The ‘hacker ethos’ that remains alive within many of the FLOSS communities

(understandably) attaches highest status to creative programming, but the social and
economic impact of the software will depend ultimately upon its adoption by large
sections of the general population who are have little or no programming skills. To reach
those “users” requires mobilizing expertise and sheer effort in a range of activities that
presently are not accorded high status: designing user-friendly interfaces, linguistic
(which is to say “cultural”) translation, effective preparation of individual user manuals
and guides to managing effective “organization migration” from closed software
packages. This is an entirely different approach from that of leaving the “technology
transfer/marketing tasks” to be undertaken by commercial enterprises --which typically
are not closely integrated into the project’s community, and which tend to wait until the
project reaches “maturity” in order to see whether it is likely to attract a substantial “final
user-base.”

• …and, for still other grounds for concern, read Brian Fitzgerald’s stimulating essay: “Has
Open Source a Future?” (2005).

To deal with these challenges will not automatically solve the problems of providing adequate

commercial sources of funding for core development and continued maintenance of major FLOSS
projects. Nor could it guarantee willingness on the part of public agencies and charitable foundations
to provide continuing overhead support for maintenance of mature project code.

Although I cannot say that dealing successfully with these difficult problems would be

sufficient for success, finding effective ways to address many of them will be required for the
sustained viability of the FLOSS paradigm as an alternative to closed commercial software
production.

Acknowledgements

The research on which this presentation has drawn received support under grant awards to Stanford University
from the National Science Foundation: IIS-0112962 (2001-04) and IIS-0329259 (2003-05). [See
http://siepr.stanford.edu/programs/OpenSoftware_David/OS_Project_Funded_Announcmt.htm.] It rests also on
the work of members of the international Project for Research on the Economics of Free/Libre & Open Source
Software (PREFLOSS), which has been sustained by funding under those NSF awards by local institutional
support from the Stanford Institute for Economic Policy Research (SIEPR) and its European academic partners:
MERIT (at Rijksuniverseitet Maastricht), IMRI (at Université Paris-Dauphine), Informatics-GSyC (at
Universidad Rey Juan Carlos, Mostoles) , SPRU/INK (at Unversity of Sussex); as well by as the Oxford
Internet Institute’ support of the Oxford Workshop on Libre Software (OWLS-2004) and Project CALIBRE-- an
EU FP6 Coordination Action.

 10

Selected References: sources and citations in accompanying presentation slides

Dalle, J.-M. and P.A. David (2005), “It takes all kinds: simulation modeling perspective on motivation
and coordination in libre software development projects,” SIEPR Open Source Economics Project Working
Paper, Stanford University (October). Submitted to Management Science.

Dalle, J.-M., P.A. David, R.A. Ghosh and W.E. Steinmueller (2005), “Advancing economic research
on the free and open source software mode of production,” in how Open Will the Future Be? Social and
Cultural Scenarios based on Open Standards and Open-Source Software, eds. M. Wynants and J. Cornelis,
Brussels: VUB Press, 2005.

Dalle, J.-M., M. den Besten, “Maintainer activity dynamics on large libre software projects,” EC
CALIBRE Project Working Paper, University of Paris-Pierre et Marie Curie, (April). [To be presented at
International Conference on Open Source Software- OSS2006, in Como, Italy, 10-12 June 2006].

P. A. David, J.-M. Dalle, R.A. Ghosh and F. Wolak (2004), “Open source development and the
‘economy of regard’: evidence from code-signing behaviors in the Linux kernel,” SIEPR Open Source
Economics Project Working Paper, Stanford University. (December). Paper presented at the Conference on the
Economics of the Internet and Software, University of Toulouse, January 2005, a revision of the paper for the
OWLS Workshop, Oxford Internet Institute [See
http://www.oii.ox.ac.uk/fiveowlsgohoot/postevent/David_OWLS_slides-blk.pdf.]

David, P.A and F. M. Rullani (2006), “Lurking, laboring and launching on SourceForge: Micro-
dynamics of open source software development,” SIEPR Open Source Economics Project Working Paper,
Stanford University (March). [To be presented at International Conference on Open Source Software- OSS2006,
in Como, Italy, 10-12 June 2006].

David, P.A., J. Shapiro and A.H.Waterman (2006), “What do we know about the developers who
contribute to “community mode” production of libre software?” SIEPR Open Source Economics Project
Working Paper, Stanford University (March).

David, P.A., A. H. Waterman and S. Arora (2003), “FLOSS-US: The free/libre/open source survey for
2003: First Report,” SIEPR Open Source Economics Project Working Paper, Stanford University (September)
[see http://www.stanford.edu/group/floss-us/report/FLOSS-US-Report.pdf].

Fitzgerald, B. (2005), “Has Open Source a Future?” Ch. 5 in Perspectives on Open Source Software,
eds., J. Feller, B. Fitzgerald, S. A. Hissam and K. R. Kakhani. Cambridge, MA: MIT Press, (2005).

Ghosh, R. A., R. Glott, B. Krieger and G. Robles (2002), “Survey of developers (Free/libre and open
source survey and study),” Technical Report, International Institute of Infonomics, University of Maastricht,
The Netherlands (June). [Available at: www.infonomics.nl/FLOSS/report].

Glott, R., R. A. Ghosh and B. Krieger (2004), “Motivations of free/libre and open source developers,”
International Infonomics Institute Working Paper, University of Maastricht (May). See the presentation by R.
Glott, “Towards integration of research approaches to FLOSS communities,” Oxford Workshop on Libre
Software (OWLS), Oxford Internet Institute, June 25-26, 2004. [Available at:
www.oii.ox.ac.uk/fiveowlsgohoot/postevent/owls-presentation_r.glott.pdf .]

Giuri P., M. Ploner , F. Rullani F., S. Torrisi (2004), "Skills and Openness of OSS Projects:
Implications for Performance", LEM Working Paper Series 2004/19, Scuola Sant Anna, Pisa. [Available
at:http://www.lem.sssup.it/WPLem/files/2004-19.pdf"].

Robles, G., J. M. Gonzales-Barahona and I. Herraiz (2005), “Evolution and growth of large libre
software projects,” In Proceedings of the International Workshop on Software Evolution, Lisbon: Portugal
(September).

A Multi-dimensional View of “Sustainability”
in Free & Open Source Software:

Commitment, Innovation, Maintenance and Growth

Paul A. David
Oxford Internet Institute & Stanford University

paul.david@oii.ox.ac.uk

A presentation to the OSS Watch Conference on
Open Source and Sustainability

held at the Said Business School, Oxford
10th -12th April 2006

INTRODUCTION
—An Economics Perspective on FLOSS

What is “open source” software?

• Free/Libre and Open Source Software (F/LOSS, or
FLOSS) is distributed with the source code fully
disclosed, and made available for use and modification
without monetary charges.

• F/LOSS is software that is distributed under the terms of
a special class of copyright licenses, primarily under the
GNU General Public License (GNU GPL).

Reference: The Open Source Definition – version 1.9, available at:
www.opensource.org/osd.html
(Originally written by Bruce Perren, this is now maintained by the
Open Source Initiative.)

F/LOSS LICENSE CONDITIONS—IN BRIEF
“Free Software Licences” (FSF definition)
• must include source code
• must allow distribution in source code as well as in compiled

(machine code) form
• cannot restrict any party from distributing the software as a

component of and aggregate distribution containing code from
different sources

• must be “non-discriminatory” among licensees
• must ensure that programmers receive credit (blame) for their

work

“Copyleft” Software Licenses (FSF definition)
Authors who copy and distribute programs based on GPL’d
code (derivative works) must do so under the GNU GPL
license-- which contains the above provisions, plus this one.

What is so very interesting for an economist
about the FLOSS development process ?

• Collective, distributed mode of creating (producing)
an information-good: software

• Extensive voluntary participation by communities of
skilled and neophyte software developers

• Novel use of IPR to distribute/publish software under
“public domain-like” conditions

• Essential dependence of the production mode upon
the “anti-proprietary” distribution regime

• Critical role of computer-mediated communications
(CMC) for this production system

• Self-documenting nature of the process permits
microlevel quantitative research on the organization of
‘collective invention’

Four fundamental economic research
questions about the FLOSS Production Mode
At the Micro-level:

• How are the human resource inputs mobilized?

• What kinds of inputs are supplied by participants in
large project communities (C-Mode production – rather
than I-Mode)?

• What factors motivate participants to devote effort to a
particular project, and project task, rather than to other
activities?

• How are these inputs allocated and coordinated within
projects? (I.e., among tasks of a particular kind ,esp.
coding, bug-fixing)

Four fundamental economic research
questions about the FLOSS Production Mode
At the Meso-level:

• How are resource inputs allocated among
projects of various types?

• What mechanisms are used to govern
projects, maintain code quality?

• How well does the system match software
output to the needs of diverse users?

• What are the comparative costs in terms of
resource use of FLOSS C-Mode production
vs. closed-proprietary software?

Starting from this perspective this presentation
focuses on three (non-funding) dimensions of
“sustainability”of FLOSS software development:

• Sustaining commitment in FLOSS projects’
development communities

• Sustaining rate of founding of new projects

• Sustaining maintainability as functionality
(and size) grows in established projects

Sustaining commitment in FLOSS
projects’ development communities

Is the initial enthusiasm and ideological commitment to
“the movement” bound to dissipate?

Will those who were attracted to the movement begin
seeking material rewards, and become disaffected by the
few who are able “cash in” on their reputations as great
project leaders?

Let’s look at what the survey evidence can tell us about
motivations among FLOSS developers.

FLOSS-US
The Free/Libre/ Open Source Software Survey for 2003

To go immediately to the questionnaire, click here:

A Web Survey of Software Developers
conducted by the Stanford University (SIEPR) research project on

Economic Organization and Viability of Open Source Software
With funding support from the National Science Foundation.

http://siepr.stanford.edu/programs/OpenSoftware
_David/OS_Project_Funded_Announcmt.htm

The FLOSS-US Survey: First Report
(September 2003) is available at:

www.stanford.edu/group/floss-us/report/FLOSS-
US-Report.pdf

Income earnings from FLOSS activities remains
atypical among survey respondents: 57% of FLOSS-
US respondents cite not having direct or derived earnings
benefits from their activities.

Source: FLOSS-US Survey Report (2003)

Ideological and self-improvement motives are salient
among initial motivations of FLOSS-US (2003) developers

Source: FLOSS-US Survey Report (2003)

Motivations are not static -- they undergo change, and the question is
whether they change in ways that are likely to allow them to be fulfilled by
the experience of participating in FLOSS activities:

This is the distribution of FLOSS-EU Survey (2002) respondents among the main
motivational groupings identified by principal components analysis of their
reasons for initially participating in open source software development….

…and this is they way motivation profiles of the same developers
appear to evolve: stated reasons for continuing to work on FLOSS
projects do not shift towards pursuit of economic rewards

The big group that cited diffuse motives (‘triers’) for beginning FLOSS have
redistributed themselves toward “skill-improvement” and “ideological” reasons
for continuing – motivation clusters that represent 64% of total respondents.

FLOSS-US respondents explained their project choices in
terms more pragmatic than the reasons they gave for

participating in FLOSS development activities

Source: FLOSS-US Survey Report (2003)

The importance of “the personal utility of the software” among the
reasons given by FLOSS-US (2003) respondents for their current
project choices reflects the predominance of very small, I-mode
projects that the respondents had personally launched.

Of 1473 respondents listing a “current project”, 64.8% described it as
“unknown” or “slightly known’: 33.0% launched it alone;

: 46.8% launched it with others.
Of 1306 respondents listing their “first projects”, 61.7% described it as
“unknown” or “slightly known”; 35.4% launched it with others.

Of 238 “newbies” (those starting a “first ¤t” project in 2001-
03), 87.9% described it as unknown or slightly known; 42.4%
launched it alone; 51.3% launched it with others.

For respondents reporting the proportion of code they contributed to their
“current project,” the upper-tail of the distribution is:

Proportions of code All 1055 Respondents 238 “Newbies”
> 0.75 44 % 54%
> 0.95 31 % 44%

Of 1451 respondents reporting code contributed to current projects,
58.9 % said > 0.75 of their submitted code was included in the project’s
release version.

FLOSS-US developers in community-mode production
have significantly different “motivation profiles” from those
working on very small projects –
• Identifier | Participant's known project (s) are all
• of five | 1-2 member > 29 member
• clusters | Independent Community | Total Characterization of Cluster’s Motivation Profile:
• ___ ______________________________________
• Cluster 1 | 11 8 | 19 “Professionals”: non-ideological, expert, self-

employed or company-sponsored to
• % | 5.14 4.55 | 4.87 collaborate on FLOSS projects
• --
• Cluster 2 | 12 29 | 41 “Aspiring hackers”: didn’t need to modify existing

code but like fixing bugs, learning about new pro-
% | 5.61 16.48 | 10.51 programs,

• ---
• Cluster 3 | 102 79 | 181 “Social learners”: become better programmers,
• % | 47.66 44.89 | 46.41 find out how programs work; work with like-minded,

‘give back to the community’, support libre ideology
• --
• Cluster 4 | 26 30 | 56 “Raymondians”: experienced hackers,,needed to
• % | 12.15 17.05 | 14.36 modify existing code and fix bugs, use the code
• --
• Cluster 5 | 63 30 | 93 “von Hippelites”: modifying existing software not
• % | 29.44 17.05 | 23.85 important, nor are learning or interacting with

like-minded others; wanted to ‘give back to the comm-
• __ unity’ by launching their own project
• Total | 214 176 | 390
• | 100.00 100.00 | 100.00 Test of significant difference: I-mode vs C-mode:

Pearson chi2(4) = 18.9175 Pr = 0.001
Source: David, Shapiro and Waterman (2006)

Nevertheless, the majority are looking forward to
careers in FLOSS-based businesses….

Source: FLOSS-US Survey Report (2003)

Sustaining the creation of new
FLOSS projects

• Are platforms such as SourceForge functioning as virtual
‘clusters’ of innovative activity, stimulating new FLOSS
projects, or do they grow mainly by attracting new start-
ups?

• We have seen lots of projects appearing on
SourceForge and other platforms, but launching new
projects is harder than re-releasing pre-existing source
code under an open source license. Do developers that
register on these platforms continue to found new
projects after they arrive?

I n i t i a l di st r i but i ons a mong f or suc c e ssi v e c ohor t s of r e gi st r a nt s on S our c e For ge
P r opor t i ons of t hose who i n a c t i v e st a t e s t ha t l a unc h pr oj e c t s wi t hi n 6 mont h i nt e r v a l s

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

ch1 ch2 ch3 ch4 ch5 ch6 ch7 al l

c o h o r t s

Proportions founding >1 projects in months 4-9 after registration on SF.Net:

Initial distributions of “active” registrants in successive arriving cohorts

Founded 1 project, joined 1 group

Founded 1 project, joined >1 group

Founded >1 project, joined >1 group

Cohorts 1 to 7 All Cohorts

The proportions of project founders declined at first but soon stabilized

Source: David and Rullani (2006)

states
1= not member of a group (project); 2= non-founding member of group;
3=non-founding member of >1 group; 4=founder & member of 1 group;
5= founder of 1 & member of >1 group; 6 = founder & member of >1 group

Source: David and Rullani (2006)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6

pr
op

or
tio

n_
_

initial distr

limiting distr

Initial and "Limiting" Distributions of the Developers Registering on
SourceForge, Net (during 1 Jan – 26 October 2001) Among 6 "Active"
States (Note: 5% starting a project in each 6-month interval, implies 40% will
be founders in 5 years; 2.5% in 6-months implies a 5-yield of 22% founders.)

Initial proportions: months 4-9

Limiting proportions

 Observed and expected
 proportions of SF population
 launching 1 or more projects
 within:

all registrants
in 2000-01:

 avg. of from
cohorts 1&2 cohort 6

All “active” registrants
in 2000-01:

 avg. of from
cohorts 1&2 cohort 6

months 4 - 9 post-registration

0.023

0.013

0.133

0.113

60 months post-registration

0.210

0.123

0.760

0.731

proportion of the registered
SF sub-population that is
expected in the limit to
launch 1 or more projects
within:

from the 10% sub-
group of all registrants

who were active
 during month 3 --

in “State 2”

from the 1% sub-
group of all registrants

who were active
during month 3 --

in “State 3”

a 6-month interval

0.030

0.000

a 60- month interval

0.263

0.000

Note: “State 2” = joining 1 project, launching 0 projects; “State 3” = joining >1 projects, launching 0 projects.
Source: David and Rullani (2006).

Project founding on SourceForge –
a small core among the “actives” become project “founders”
within their first year, a majority of them within 3 years, if they
haven’t joined multiple group soon after arriving

founder’s role

communicative
attitude,

generic skills

programming
skills, principal

languages,
members’

communicative
attitude

networking

projects
productivity and

size
other languages

Percentage variation in the averages of
each variable per 30-days periods

Mf_4_15= avg for founders in 4-15 (5514)

Mpop= avg for whole pop. (71728)

Source: Guiri, et al (2004)

()
pop

popf

M
MM −15_4_

Ever-Founders vs. Ever-Members in the SF.Net (2001) Sample

The evidence from SourceForge on the vitality of project
founding is somewhat mixed—

A significant number of registrants among those who are at
all active go on to found projects;

the observed rates of transitions from project
membership to project launching have stabilized,

and the transition probabilities among the “states”
imply “limiting” proportions involved in creating new
projects that are about the same as those observed in
months 4-9 following arrival on the platform.

But the project founders do not appear to have
greater programming skills than the project members, and
the are primarily involved in small and projects where there
is less activity. In 2003 72% of the projects on SourceForge
had only 1 member!

Sustaining maintainability as
functionality (and size) grows in

established projects

Sustaining maintainability and
growth in large FLOSS projects

Won’t the increase in the file size of these loosely
managed projects result in the disproportionate
increase of the interconnections among them?

True: N files have N x (N-1) ≈ N2 potential
interconnections, and this could create increasingly
difficult problems for code maintenance and
upgrading, causing greater and greater delays
between releases of versions that significantly
upgrade the functionally of the software system.

But: that is hardly a necessary outcome.
Linear growth of large projects’ file sizes during months following version 1
release : 12 of 18 libre source projects Source: Robles et al (2005)

Super-linear growth of number of physical lines of code in
the Linux kernel: versions 1.0 through 2.6

Source: Robles et al (2005):

Source: David and Dalle (2005): Stochastic simulation of a highly evolved code-tree:
3 modules at d =14 from the root module

Semi-decomposable code architectures are “tree-like”, facilitating flatter
governance structures and reducing complexity of patching and upgrading

Dimension of the Linux kernel code-base

14.912.218.8% of code “un-credited” *

2,263616158Number of identified authors*

133.8521.054.54 Bytes of code (millions)

3,157,543527,773121,987Physical lines of code*

Ver.2.5.25Ver.2.0.30Ver. 1.0Linux kernel

48,0067,8081,748Number of defined functions*

12,4512,155593Number of files

1686030Number of modules *

Jul-02Apr-97Mar-94Approximate release date

*See Ghosh and David (2003): modules or “code packages” defined for the LICKS
study;”authors” identified by CODD algorithm from email signatures; “un-credited”
bytes (KBOC)= CODD found no signature.

linux 25 - uncredited % vs. dependency count measures

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

sup or dep num

un
cr

ed
ite

d
%

supnum
depnum

Supnum(i) = number of modules supported by (“call”) the i-th module

Depnum(i) = number of modules that the i-th module depends on (“calls”)

supnum>140 :36 mods

41<depnum<60 :129 mods

Source: David, Dalle, Ghosh and Wolak (2004)

A realistic optimist’s conclusion

Correcting a number of frequently voiced
grounds for pessimism doesn’t answer all the
sceptics,

because there are a number of serious
challenges to the sustained success of the
FLOSS community mode of production

– and that is the only viable alternative to
conventional “closed” code production
methods for complex software systems.

A realistic optimist’s conclusion
-- here are some of the serious challenges

• Will the pool of programmers capable of writing good code be
adequate? Are the many projects with only a few members indicative
of difficulties in recruiting a talented core?

• Writing modular architectures are essential for the successful
management and assimilation of new programmers who under the
rationale of requirements and code design on big projects, but “code
gods” who do that remain rare.

• The global FLOSS community is widely distributed and very loosely
connected so that coordination on some strategies of resource
allocation is difficult, and on this count is likely to be at a
disadvantage if it continues to “engage” in head-to-head competition
with focused commercial vendors who are learning “aigile
programming” and moving toward continuous release production.

• The success of a number of large projects could make them targets
for future patent infringement suits (like that of the SCO Group),
pushing them toward protective limited liability incorporation as
foundations, but the resulting controls are likely to conflict with the
ethos of the original FLOSS movement.

• …for some others, see Brian Fitzgerald’s “Has Open Source a Future?”
in J. Feller et al., Perspectives on Open Source Software (2005)

A realistic optimist’s conclusion

Meeting these challenges will not automatically
create a supportive commercial ecology for
FLOSS projects, or guarantee steady funding
from public and charitable sources.

But if addressing these issues is not sufficient
for future success, it is likely to be necessary.

A Multi-dimensional View of “Sustainability”
in Free & Open Source Software:

Commitment, Innovation, Maintenance and Growth

Paul A. David
Oxford Internet Institute & Stanford University

paul.david@oii.ox.ac.uk

A presentation to the OSS Watch Conference on
Open Source and Sustainability

held at the Said Business School, Oxford
10th -12th April 2006

INTRODUCTION
—An Economics Perspective on FLOSS

F/LOSS LICENSE CONDITIONS—IN BRIEF
“Free Software Licences” (FSF definition)
• must include source code
• must allow distribution in source code as well as in compiled

(machine code) form
• cannot restrict any party from distributing the software as a

component of and aggregate distribution containing code from
different sources

• must be “non-discriminatory” among licensees
• must ensure that programmers receive credit (blame) for their

work

“Copyleft” Software Licenses (FSF definition)
Authors who copy and distribute programs based on GPL’d
code (derivative works) must do so under the GNU GPL
license-- which contains the above provisions, plus this one.

What is so very interesting for an economist
about the FLOSS development process ?

• Collective, distributed mode of creating (producing)
an information-good: software

• Extensive voluntary participation by communities of
skilled and neophyte software developers

• Novel use of IPR to distribute/publish software under
“public domain-like” conditions

• Essential dependence of the production mode upon
the “anti-proprietary” distribution regime

• Critical role of computer-mediated communications
(CMC) for this production system

• Self-documenting nature of the process permits
microlevel quantitative research on the organization of
‘collective invention’

Four fundamental economic research
questions about the FLOSS Production Mode
At the Micro-level:

• How are the human resource inputs mobilized?

• What kinds of inputs are supplied by participants in
large project communities (C-Mode production – rather
than I-Mode)?

• What factors motivate participants to devote effort to a
particular project, and project task, rather than to other
activities?

• How are these inputs allocated and coordinated within
projects? (I.e., among tasks of a particular kind ,esp.
coding, bug-fixing)

Four fundamental economic research
questions about the FLOSS Production Mode
At the Meso-level:

• How are resource inputs allocated among
projects of various types?

• What mechanisms are used to govern
projects, maintain code quality?

• How well does the system match software
output to the needs of diverse users?

• What are the comparative costs in terms of
resource use of FLOSS C-Mode production
vs. closed-proprietary software?

Starting from this perspective this presentation
focuses on three (non-funding) dimensions of
“sustainability”of FLOSS software development:

• Sustaining commitment in FLOSS projects’
development communities

• Sustaining rate of founding of new projects

• Sustaining maintainability as functionality
(and size) grows in established projects

Sustaining commitment in FLOSS
projects’ development communities

Is the initial enthusiasm and ideological commitment to
“the movement” bound to dissipate?

Will those who were attracted to the movement begin
seeking material rewards, and become disaffected by the
few who are able “cash in” on their reputations as great
project leaders?

Let’s look at what the survey evidence can tell us about
motivations among FLOSS developers.

FLOSS-US
The Free/Libre/ Open Source Software Survey for 2003

To go immediately to the questionnaire, click here:

A Web Survey of Software Developers
conducted by the Stanford University (SIEPR) research project on

Economic Organization and Viability of Open Source Software
With funding support from the National Science Foundation.

http://siepr.stanford.edu/programs/OpenSoftware
_David/OS_Project_Funded_Announcmt.htm

The FLOSS-US Survey: First Report
(September 2003) is available at:

www.stanford.edu/group/floss-us/report/FLOSS-
US-Report.pdf

Income earnings from FLOSS activities remains
atypical among survey respondents: 57% of FLOSS-
US respondents cite not having direct or derived earnings
benefits from their activities.

Source: FLOSS-US Survey Report (2003)

Ideological and self-improvement motives are salient
among initial motivations of FLOSS-US (2003) developers

Source: FLOSS-US Survey Report (2003)

Motivations are not static -- they undergo change, and the question is
whether they change in ways that are likely to allow them to be fulfilled by
the experience of participating in FLOSS activities:

This is the distribution of FLOSS-EU Survey (2002) respondents among the main
motivational groupings identified by principal components analysis of their
reasons for initially participating in open source software development….

…and this is they way motivation profiles of the same developers
appear to evolve: stated reasons for continuing to work on FLOSS
projects do not shift towards pursuit of economic rewards

The big group that cited diffuse motives (‘triers’) for beginning FLOSS have
redistributed themselves toward “skill-improvement” and “ideological” reasons
for continuing – motivation clusters that represent 64% of total respondents.

FLOSS-US respondents explained their project choices in
terms more pragmatic than the reasons they gave for

participating in FLOSS development activities

Source: FLOSS-US Survey Report (2003)

The importance of “the personal utility of the software” among the
reasons given by FLOSS-US (2003) respondents for their current
project choices reflects the predominance of very small, I-mode
projects that the respondents had personally launched.

Of 1473 respondents listing a “current project”, 64.8% described it as
“unknown” or “slightly known’: 33.0% launched it alone;

: 46.8% launched it with others.
Of 1306 respondents listing their “first projects”, 61.7% described it as
“unknown” or “slightly known”; 35.4% launched it with others.

Of 238 “newbies” (those starting a “first ¤t” project in 2001-
03), 87.9% described it as unknown or slightly known; 42.4%
launched it alone; 51.3% launched it with others.

For respondents reporting the proportion of code they contributed to their
“current project,” the upper-tail of the distribution is:

Proportions of code All 1055 Respondents 238 “Newbies”
> 0.75 44 % 54%
> 0.95 31 % 44%

Of 1451 respondents reporting code contributed to current projects,
58.9 % said > 0.75 of their submitted code was included in the project’s
release version.

Distributions of motives of participants in C-mode and I-mode projects differ

Clusters I-Mode C-Mode Total Characterization of cluster’s motivation profile

Cluster 1
%

11
5.14

8
4.55

19
4.87

Non- ideological, expert, self- employed or company-
sponsored to collaborate on FLOSS projects:
professionals.

Cluster 2
%

12
5.61

29
16.48

41
10.51

Didn’t need to modify existing code but like fixing bugs,
learning new programs: aspiring hackers.

Cluster 3
%

102
47.66

79
44.89

181
46.41

Become better programmers, find out how programs
work; work with like-minded, ‘give back to
community’, support Libre ideology: social learners.

Cluster 4
%

26
12.15

30
17.05

56
14.36

Needed to modify existing code and fix bugs, see open
source as the “best way”: experienced hackers.

Cluster 5
%

63
29.44

30
17.05

93
23.85

Modifying existing software is not important, nor are
learning, and interacting with like-minded others,
wanted to ‘give back to community’, many launched
their own projects: (individualistic) user-innovators.

Total
%

214
100

176
100

390
100

Distribution of Developers by “Motivation Profiles” (from Cluster Analysis of Sub-samples
the FLOSS-US Survey Respondents – Grouped by Projects’ Membership Sizes (>30) vs. (1-2))

Source: David, Shapiro and Waterman (2006)

Nevertheless, the majority are looking forward to
careers in FLOSS-based businesses….

Source: FLOSS-US Survey Report (2003)

Sustaining the creation of new
FLOSS projects

• Are platforms such as SourceForge functioning as virtual
‘clusters’ of innovative activity, stimulating new FLOSS
projects, or do they grow mainly by attracting new start-
ups?

• We have seen lots of projects appearing on
SourceForge and other platforms, but launching new
projects is harder than re-releasing pre-existing source
code under an open source license. Do developers that
register on these platforms continue to found new
projects after they arrive?

I n i t i a l di st r i but i ons a mong f or suc c e ssi v e c ohor t s of r e gi st r a nt s on S our c e For ge
P r opor t i ons of t hose who i n a c t i v e st a t e s t ha t l a unc h pr oj e c t s wi t hi n 6 mont h i nt e r v a l s

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

ch1 ch2 ch3 ch4 ch5 ch6 ch7 al l

c o h o r t s

Proportions founding >1 projects in months 4-9 after registration on SF.Net:

Initial distributions of “active” registrants in successive arriving cohorts

Founded 1 project, joined 1 group

Founded 1 project, joined >1 group

Founded >1 project, joined >1 group

Cohorts 1 to 7 All Cohorts

The proportions of project founders declined at first but soon stabilized

Source: David and Rullani (2006)

states
1= not member of a group (project); 2= non-founding member of group;
3=non-founding member of >1 group; 4=founder & member of 1 group;
5= founder of 1 & member of >1 group; 6 = founder & member of >1 group

Source: David and Rullani (2006)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6

pr
op

or
tio

n_
_

initial distr

limiting distr

Initial and "Limiting" Distributions of the Developers Registering on
SourceForge, Net (during 1 Jan – 26 October 2001) Among 6 "Active"
States (Note: 5% starting a project in each 6-month interval, implies 40% will
be founders in 5 years; 2.5% in 6-months implies a 5-yield of 22% founders.)

Initial proportions: months 4-9

Limiting proportions

Observed and expected
 proportions of SF population
 launching 1 or more projects
within:

all registrants
in 2000-01:

 avg. of from
cohorts 1&2 cohort 6

All “active” registrants
in 2000-01:

 avg. of from
cohorts 1&2 cohort 6

months 4 - 9 post-registration 0.023 0.013 0.133 0.113

60 months post-registration 0.210 0.123 0.760 0.731

proportion of the registered
SF sub-population that is
expected in the limit to
launch 1 or more projects
within:

from the 10% sub-
group of all registrants

who were active
 during month 3 --

in “State 2”

from the 1% sub-
group of all registrants

who were active
during month 3 --

in “State 3”

a 6-month interval 0.030 0.000

a 60- month interval 0.263 0.000

Note: “State 2” = joining 1 project, launching 0 projects; “State 3” = joining >1 projects, launching 0 projects.
Source: David and Rullani (2006).

Project founding on SourceForge –
a small core among the “actives” become project “founders”
within their first year, a majority of them within 3 years, if they
haven’t joined multiple group soon after arriving

founder’s role

communicative
attitude,

generic skills

programming
skills, principal

languages,
members’

communicative
attitude

networking

projects
productivity and

size
other languages

Percentage variation in the averages of
each variable per 30-days periods

Mf_4_15= avg for founders in 4-15 (5514)

Mpop= avg for whole pop. (71728)

Source: Guiri, et al (2004)

pop

popf

M
MM 15_4_

Ever-Founders vs. Ever-Members in the SF.Net (2001) Sample

The evidence from SourceForge on the vitality of project
founding is somewhat mixed—

A significant number of registrants among those who are at
all active go on to found projects;

the observed rates of transitions from project
membership to project launching have stabilized,

and the transition probabilities among the “states”
imply “limiting” proportions involved in creating new
projects that are about the same as those observed in
months 4-9 following arrival on the platform.

But the project founders do not appear to have
greater programming skills than the project members, and
the are primarily involved in small and projects where there
is less activity. In 2003 72% of the projects on SourceForge
had only 1 member!

Sustaining maintainability as
functionality (and size) grows in

established projects

Sustaining maintainability and
growth in large FLOSS projects

Won’t the increase in the file size of these loosely
managed projects result in the disproportionate
increase of the interconnections among them?

True: N files have N x (N-1) N2 potential
interconnections, and this could create increasingly
difficult problems for code maintenance and
upgrading, causing greater and greater delays
between releases of versions that significantly
upgrade the functionally of the software system.

But: that is hardly a necessary outcome.
Linear growth of large projects’ file sizes during months following version 1
release : 12 of 18 libre source projects Source: Robles et al (2005)

Super-linear growth of number of physical lines of code in
the Linux kernel: versions 1.0 through 2.6

Source: Robles et al (2005):

Source: David and Dalle (2005): Stochastic simulation of a highly evolved code-tree:
3 modules at d =14 from the root module

Semi-decomposable code architectures are “tree-like”, facilitating flatter
governance structures and reducing complexity of patching and upgrading

Dimension of the Linux kernel code-base

14.912.218.8% of code “un-credited” *

2,263616158Number of identified authors*

133.8521.054.54Bytes of code (millions)

3,157,543527,773121,987Physical lines of code*

Ver.2.5.25Ver.2.0.30Ver. 1.0Linux kernel

48,0067,8081,748Number of defined functions*

12,4512,155593Number of files

1686030Number of modules *

Jul-02Apr-97Mar-94Approximate release date

*See Ghosh and David (2003): modules or “code packages” defined for the LICKS
study;”authors” identified by CODD algorithm from email signatures; “un-credited”
bytes (KBOC)= CODD found no signature.

linux 25 - uncredited % vs. dependency count measures

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

sup or dep num

un
cr

ed
ite

d
%

supnum
depnum

Supnum(i) = number of modules supported by (“call”) the i-th module

Depnum(i) = number of modules that the i-th module depends on (“calls”)

supnum>140 :36 mods

41<depnum<60 :129 mods

Source: David, Dalle, Ghosh and Wolak (2004)

A realistic optimist’s conclusion

Correcting a number of frequently voiced
grounds for pessimism doesn’t answer all the
sceptics,

because there are a number of serious
challenges to the sustained success of the
FLOSS community mode of production

– and that is the only viable alternative to
conventional “closed” code production
methods for complex software systems.

A realistic optimist’s conclusion
-- here are some of the serious challenges

• Will the pool of programmers capable of writing good code be
adequate? Are the many projects with only a few members indicative
of difficulties in recruiting a talented core?

• Writing modular architectures are essential for the successful
management and assimilation of new programmers who under the
rationale of requirements and code design on big projects, but “code
gods” who do that remain rare.

• The global FLOSS community is widely distributed and very loosely
connected so that coordination on some strategies of resource
allocation is difficult, and on this count is likely to be at a
disadvantage if it continues to “engage” in head-to-head competition
with focused commercial vendors who are learning “aigile
programming” and moving toward continuous release production.

• The success of a number of large projects could make them targets
for future patent infringement suits (like that of the SCO Group),
pushing them toward protective limited liability incorporation as
foundations, but the resulting controls are likely to conflict with the
ethos of the original FLOSS movement.

• …for some others, see Brian Fitzgerald’s “Has Open Source a Future?”
in J. Feller et al., Perspectives on Open Source Software (2005)

A realistic optimist’s conclusion

Meeting these challenges will not automatically
create a supportive commercial ecology for
FLOSS projects, or guarantee steady funding
from public and charitable sources.

But if addressing these issues is not sufficient
for future success, it is likely to be necessary.

